
On canonical formalism in field theory with derivatives of higher order-canonical

transformations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 39

(http://iopscience.iop.org/0305-4470/11/1/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 11, No. 1, 1978. Printed in Great Britain. 0 1978 

On canonical formalism in field theory with derivatives of 
higher order-canonical transformations 

Djordje MuSicki 
Faculty of Natural and Mathematical Sciences and Institute of Physics, Beograd, 
Yugoslavia 

Received 25 March 1977, in final form 1 July 1977 

Abstract. For a canonical formalism with derivatives of higher order, the corresponding 
theory of canonical transformations is given in the most general case for classical and 
covariant field theory. Relations with the generating functional, infinitesimal trans- 
formations, Hamilton-Jacobi method, Lagrange and Poisson brackets, as well as integral 
invariants of the first and higher orders and the corresponding Liouville theorem are 
considered. 

1. Introduction 

Over thirty years ago, Bopp and Podolski attempted a generalisation of 
electrodynamics, based 011 the Lagrangian with second-order derivatives. Then an 
interest was taken in the generalisation of the Hamiltonian canonical formalism for 
the case when the derivatives of arbitrary order appear in the Lagrangian. The 
corresponding Canonical equations have been obtained by Ostrogradski (1 850) and de 
Donder (1935), using the calculus of variations, and independently by Koestler and 
Smith (1965) in analytical mechanics. Also Rodrigues and Rodrigues (1970) have 
formulated the corresponding canonical transformations in this formalism, correcting 
the definition of the Poisson bracket given by the mentioned authors so that this is 
always invariant, and obtained the corresponding Hamilton-Jacobi equation on the 
basis of canonical transformations. 

In classical field theory Chang (1948) was the first to formulate the canonical 
formalism, but in an implicit manner; de Wet (1948) introduced the generalised 
momenta explicitly, starting from the variation of the action, and obtaining the 
corresponding canonical equations. Independently of these latter results Borneas 
(1960) found the corresponding Hamiltonian by transforming the Lagrangian equa- 
tions into a convenient form, and Thielheim (1967) derived expressions for the density 
of energy, momentum and angular momentum in field theory, as well as the canonical 
equations for such fields. 

Nevertheless, their definitions of the generalised momenta showed certain 
deficiencies, and only Coelho de Souza and Rodrigues (1969) defined these quantities 
in a way completely analogous to that in analytical mechanics, and thus obtained the 
corresponding generalised Hamiltonian equations. They were the first and only 
authors to have investigated canonical transformations in classical field theory, and to 
have formulated the corresponding generalised Poisson brackets, proving their in- 
variance with respect to the canonical transformations. 
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40 D Muiicki 

Canonical formalism in field theory may be expressed either directly in a covariant 
manner, by using four space-time coordinates, or in a parametric manner using the 
space-like surfaces. In the general case, when the Lagrangian depends on derivatives 
of arbitrary order, de Donder (1935) used the calculus of variations to derive the 
corresponding equations of the extremals for several independent variables in the 
canonical form, which can be interpreted as the covariant canonical equations in the 
direct formalism. 

The corresponding canonical transformations were studied only in the usual case 
by Weiss (1938), who based them on the space-like surfaces, and in the direct 
formalism by Good (1954) and Liotta (1956). Nevertheless, their most important 
results cannot be considered correct, since the Poisson bracket introduced by Good in 
the general case is not invariant and does not exhibit any characteristics of these 
brackets. Freistadt (1959) defined the Poisson bracket with the aid of the space-like 
surfaces and on this basis the canonical transformations were studied in the form of 
the functionals by the author (Mouchitzkyl 1965, MuSicki 1968), who obtained the 
corresponding differential and integral invariants. 

In this general case de Wet (1948), Thielheim (1967) and Borneas (1969) studied 
the general variation of the action and conservation laws in direct formalism, but 
without any connection with canonical transformations, which were studied only in 
classical field theory. As far as the author knows, there are no published papers 
devoted to the problem of the covariant formulation of the canonical transformations 
in field theory. 

2. Classical field theory 

2.1. Generalised Hamiltonian equations in field theory 

Let us consider a physical field defined by r field functions &(xi, t) and assume that it 
can be described by a Lagrangian in the form of a functional: 

The corresponding Lagrangian equations, equivalent 
may be written as 

(2.1) 

to the Hamiltonian principle, 

SL d SL dZ SL d s  SL 
SI,!fk dt dt 
--- - +- -- . . . + ( - l ) S z  SlLp"0, 

where the calculus of functionals (Volterra 1959) is used, or more concisely 

f l  

8w/S*k = 0, W = L dt. 

Introducing the generalised momenta by 

? This is a transliteration of MuSicki. 
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Coelho de Souza and Rodrigues (1969) obtained the corresponding canonical equa- 
tions in the form 

(k =1 ,2 , .  . . , r ;  m = 1 , 2 , .  . . , s) 
SH SH cl;p-” - 

k k / m  =-e), Srk/m ’ 
(2.4) 

where the Hamiltonian is 

H[$Lm-”, rk/m; t ]  = ( 7Tk/m$im)-z)  dV. (2.5) 
k = l  m = l  

These are the generalised Hamiltonian equations for fields and they represent a 
system of 2rs first-order differential equations with canonical variables $im-” and 
T k / m  as unknown functions. The Hamiltonian may be formed in a manner analogous 
to that in particle mechanics, by eliminating only the higher-order derivatives. 

In certain cases these systems can be reduced to standard systems, namely when 

L[$k, $k, . 3 $?); t ]  = LO[$k, $k ; t ]  +dF[$k, dk, . . - 9 4F-l’. , t l l d t .  (2.6) 

Then in each point 

6L SF S2L -- 
&@’ - SlCIp-” f S*p’S$l‘“’ = 0,  

from which follows 

(2.7) 

so that all such reducible systems are degenerate in the sense of Dirac (1950). 

2.2. Formulation of the canonical transformations 

The canonical transformations were defined by the quoted authors as such trans- 
formations of the canonical variables 

,&m-’)=F km $jn-‘), r l / n ;  t ] ,  +k/m = Gkm[$ln-’), TI/n; t ]  (2.8) 
which leave the form of the generalised Hamiltonian equations invariant. The theory 
of thus defined canonical transformations may be developed in analogy with analytical 
mechanics in the following manner. 

With the Hamiltonian equations equivalent to the Hamiltonian principle, the 
necessary and sufficient condition for the transformation (2.8) to be canonical is 

where c ( x )  is any function of the space coordinates and G is the corresponding 
generating functional. Taking this as a functional of the type G1[~Lmm-’), Jim-’); t ] ,  
one obtains 

(2.10) 

where E is the mean value of the function c ( x )  in the domain V; while for the 
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generating function of the type G z [ $ ~ ~ - ~ ) ,  fiklm; t ] :  

If the generating functional G1, or GZ, has the form of an integral whose integrand 
contains derivatives with respect to space coordinates, these relations represent a 
system of differential equations, which may be reduced to algebraic equations if the 
integrand does not contain these derivatives. In the general case they will form a 
system of functional differential equations, for example integro-diff erential equations. 
Solving the first group of these equations with respect to $im-”, or ijklm, and inserting 
the obtained solutions into the second group, one finds new canonical variables as 
functionals of the old ones. 

Consider canonical transformations of the form 

+ &blm-l), *k/m = r k / m  -b Srk/m. (2.12) $p-1)= $im-1) 

Since 

G;[$Lm-”, ijklm] = 5 1 1 $ lmm-’ ) i ik lm d V  
k m  

yields an identical transformation, the generating functional may be taken in the form 

Gz[$Lm”-”, f i k l m ;  t ]  = J 1 1 $Lm-’)fikim d V +  EG’[$L”-’), ijklm; t ] ,  (2.13) 

where E is a small parameter. According to (2.11) one obtains approximately 

k m  

E S G ’ / h / m ,  = --E SG’/S$“”. (2.14) 

For G’ = H and E = dt  these relations give, with the aid of the generalised Hamil- 
tonian equations, 

S * y ”  = 

S$p--l) = d+Lm-l) 3 a r k / ,  = d r k / m ,  (2.15) 

i.e. time evolution of the state of a field in any point may be represented as a series of 
the subsequent infinitesimal canonical transformations. 

2.3. Hamilton-Jacobi method 
If we consider a canonical transformation for which the new Hamiltonian is zero, the 
new canonical variables are independent of time, but are arbitrary functions of the 
space coordinates 

(2.16) 

In this case, by substituting all the generalised momenta in the Hamiltonian by 
SS/S$l”-”, the last relation (2.1 1) gives 

JLm-1) - 
*k/m = a k m  ( x  1, - P k m  ( x  ). 

(2.17) 

This is the corresponding Hamilton-Jacobi equation, which has the form of a 
functional differential equation. If we find a complete integral, the canonical variables 
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may be obtained by solving the system of equations 

In the case when the functional S has the form of an integral, this will be a system 
of differential or algebraic equations, and in the general case a system of functional 
differential equations. Solving the second group of these equations with respect to 
$im-’) and inserting the obtained solutions into the first group, one will obtain all the 
canonical variables as functionals of a),,, PI,, and t. 

2.4. Lagrange and Poisson brackets 

The condition (2.9) can be transformed only into old variables if we substitute d$im”-” 
by the corresponding functional differential according to (2.8) 

I (1 P k m ( X )  d@Lm-”+C 1 Q k m ( X )  drk/m + R ( x )  d t  d V = dG, 
k m  k m  ) 

where Pkm, Qkm and R are certain functions of both old and new canonical variables. 
By applying the conditions which make this expression a total differential, they may be 
written in a more concise form: 

(XI,  dn-%’)}$,+ = 0, 

(x), r l / n ( x ’ ) } t j , +  = (&dmns(X - x ’ ) ) / C  

{ r k / m ( x ) ,  T l / n ( x ’ ) } $ , +  = 0, {+p-1) 

(2.19) { @p - 1 ) 
where the generalised Lagrange bracket is introduced: 

These brackets are connected with the Poisson brackets by a relation analogous to 
that in analytical mechanics. With the aid of this relation and (2.19) one may also 
express these conditions in the form of the generalised Poisson brackets: 

(XI,  dn-’)(x’)1&+ = 0, [ T k / , ( X ) ,  T l / n ( X ’ ) ] $ , l i  = 0, [@Lm - 1 ) 

[ ~ l ,  i m  - 1) 
(2.21) 

(XI, r l / n ( ~ ’ ) ] t j , +  = t a d m n S ( X  -x ’>.  

If we start from the generalised Lagrange bracket in the new canonical variables 
and transform the corresponding functional derivatives to the old ones, this bracket 
will be reduced to the fundamentals, so that using (2.19) one finds 

Iu(x), u(x’)l&* = { u ( x ) ,  ~(X’I}+.?r/C. (2.22) 

For the generalised Poisson bracket one obtains analogously 

I U ( X ) ,  ~(X’)lIL, ls .  =c‘ [u(x) ,  u(x’>l+,llt (2.23) 

which for c = 1 is identical with the result obtained by Coelho de Souza and Rodrigues 
(1969). So one may conclude that the generalised Lagrange and Poisson brackets 
remain invariant with respect to the canonical transformations up to the multiplier 
1/E, or c‘. 
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2.5. de Donder's relation and integral invariants 

In order to present the states of a physical field geometrically, let us introduce the 
phase space whose elements are $L'"-')(xi, t )  and T k / m ( X i ,  t ) ,  considering the space 
coordinates x i  to be fixed parameters. If we consider one line in this phase space 
defined by 

~ p - 1 )  = d Y ) ( t ,  a), r k / m  = r k / m  ( t ,  ), (2.24) 

and denote by S' the variation arising from the change of the parameter a for St = 0, 
we can introduce the quantity 

(2.25) 

Starting from the identity, which comes from the definition of the functional derivative 

SW SL d SW -- 
S&mY 1) - p - d r K p  

upon multiplication by S'$L'"-l) and summation, we obtain 

(2.26) 

This relation represents the generalisation of one of the relations by de Donder 
(1935, p 98) and it corresponds to the central Lagrangian equation in analytical 
mechanics. If the Lagrangian equations (2.2) are satisfied, the last term vanishes, so 
that integrating this relation along the closed curve (2.24) gives the quantity 

which remains constant with time. 

variation of the action 
In the general case, when time also varies, we should rather start from the general 

1 

8 w = 1 I (1 1 trklmS@km-l)- %?Sf) d VI . 
k m  0 

If we imagine trajectories of the state drawn through every point of any closed curve 
LO in the extended phase space, then by integrating the above relation along this curve 
we obtain 

This is the corresponding PoincarC-Cartan integral and has the same value along all 
the curves on the surface formed by these trajectories. 

In order to investigate the behaviour of this integral to the canonical trans- 
formations, let us start from the necessary and sufficient condition (2.9), where d will 
be substituted by 6, and integrate it along any closed curve. In this way, since 
4 SG = 0, we find 

= TIC, (2.29) 
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i.e. the generalised PoincarC-Cartan integral is invariant to the canonical trans- 
formations up to the multiplier 1/E. 

2.6. Absolute integral invariants of higher order 

The integral (2.27) may be transformed into a surface integral by the use of Stokes' 
theorem generalised to the functionals 

L "  . c  

To obtain other absolute invariant integrals of higher order corresponding to PoincarC 
invariant integrals in analytical mechanics, it is necessary to avoid the non-denu- 
merability of the set of functions & ( x i ,  t ) ,  because of the continuous index x .  Let us 
divide the domain V into a very large number N of cells, taking all values of the 
functions &(x i ,  t )  to be equal in all points of the same cell. In this way the considered 
physical field is substituted by an equivalent system with Nr degrees of freedom. 

Let us form now, in analogy with analytical mechanics for this generalised case, the 
following set of integrals: 

(2.31) 

a T l / l ( X l ) .  . 8 T l / l ( X N ) .  * * a T r / s ( X l )  * a r r / s ( X N ) .  

Here 2, denotes the summation with respect to the mentioned cells and this sum- 
mation is extended only over the terms with different indices, discrete and 
continuous. In the limit N + CO the last integral may be interpreted as the volume of 
this phase space 

(2.32) 

By introducing the Gaussian parameters and developing the Jacobian of this 
transformation into second-order minors by generalisation of the corresponding rela- 
tion in analytical mechanics (Mercier 1955), the element of any of these integrals may 
be written in the form: 

1 
= - c * { U v 1 ,  uYHuv3, uv41 . . . { u ~ ~ - ~ ,  U-,} dui d ~ 2  . . . duzf. 2' 

The summation is extended over all the permutations ( v l ,  v2,. . . , vZf) with the sign 
positive for even permutations and negative for odd permutations. Using (2.22) one 
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obtains for the transformed integrals 

Tf = 9-12 (1 sfs rsN). (2.33) 

Consequently, all the generalised Poincart integrals of higher order, which can be 
formed for each fixed value of N, remain invariant in the canonical transformations up 
to the multiplier l / E f .  

2.7. Generalised Liouville theorem 

As a consequence of the invariance of the last integral (2.31), the corresponding 
Liouville theorem follows directly in the limit N 3 03. Namely, for f = rsN and c = 1 
one has 

T r s N  == Y r s N  (c = 1) 

and this integral for N 3 03 represents, according to (2.32), the volume of the consi- 
dered phase space 

&T = AI?, (2.34) 

which may be interpreted, in view of (2.15), in the following manner. Consider all the 
representative points in phase space occupying the volume A r l =  A r  at the moment t l ;  
at some later moment t2 they will occupy another part of the phase space of the same 
volume A r 2  = m, i.e. 

A r 2  = A r i .  (2.35) 

Hence, the density of the representative points along their trajectories in the phase 

- 

space remains constant with time, which can be expressed as 

aP 
dt at  
9 = [p, HI + - = 0. (2.36) 

This is the corresponding generalised Liouville theorem, which is also seen to remain 
valid for classical fields in the considered case, and on this basis the usual statistical 
physics could be extended to such continuous systems. 

3. Covariant formulation 

3.1. de Donder's equations in Weyl formalism 

Let us consider a physical field defined by r field functions +bk = $ ' ( x u )  and let this 
field be described by a certain Lagrangian, which depends also on derivatives up to 
order s: 

(3.1) 
k 2=z(*k; *,:I; * .  ; $,a1 ... a 3 ; x a ) ,  

where i,l~,& = a+'/axa1 and so on. The corresponding Lagrangian equations, 
equivalent to the Hamiltonian principle, have the form 

a s  -- k -0 .  
d* . . . +(-1y 

a 2  -- 3 2  d a 2  + d2 
a$' dxai a*,:, dxul dxaZ a$,'hIa2 dxul d x a 2 .  . . dx"' a$,al.. .a, 
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For this case de Donder (1935) has introduced generalised momenta in his in- 
variant theory of the calculus of variations, namely 

k with four generalised momenta ~ t l . . . " ~  corresponding to each function $ , a l . . . a m - l ,  or 
explicitly 

On this basis he obtained the equations of the extremals in the canonical form 

where the Hamiltonian is 

(3.6) k . r ; : . . .am; r;l...am k 
w * , a l . . . a m - l ,  *.a1... am-%. 

These equations are the corresponding generalised Hamiltonian equations and can 
be interpreted as the covariant canonical equations in Weyl formalism. They 
represent a system of 5r(4s - 1)/3 first-order differential equations with as many 
unknown functions 

a1. . .um 
T; l ,  rr1a2,. . , rk , k k  k 

$ 7 $,a19 . - 9 $a1 ... a m - l ;  

which in this case play the role of the canonical variables, 

3.2. Total variation of the action 

For this considered case Borneas (1969) has studied the general variation of the action 

S W =  S 2 d 4 x +  2S(d4x), I I  (3.7) 

assuming that not only the functions but also the independent variables xa and 
the domain of integration vary. By decomposing the first variation into parts which 
arise from a change in the form of functions and from a change of independent 
variables, he found 

This set Tim represents the generalisation of the energy-momentum tensor in the field 
theory. 

If the Lagrangian equations (3.2) are satisfied, the first term in (3.8) vanishes and 
the second term may be transformed into the surface integral with the aid of Gauss' 
theorem. In this way, choosing the variations on the time-like part of the surface (T to 
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be zero, one obtains 

(3.10) 

where ( T ~  and u2 are the space-like parts of the surface U. 
This is the generalised 'boundary formula' in the Weyl formalism and is equivalent 

to the validity of the corresponding Lagrangian or Hamiltonian equations. Indeed, if 
these equations are satisfied, the relation (3.9) is valid, and vice versa. 

3.3. Formulation of the canonical transformations 

Let us consider the transformations of the canonical variables on one of two space-like 
surfaces U; (i = 1,2)  in the form of the functionals 

(3.11) 

If these transformations leave the form of the generalised Hamiltonian equations (3.5) 
invariant, we will call them canonical transformations. 

The generalised Hamiltonian equations are equivalent to the boundary formula 
(3.10), which should also be valid for the new canonical variables, and so the necessary 
and sufficient condition for the transformation (3.11) to be canonical is 

I ( T ~ ' ~ " ~ ~ W ~ ~ . . . ~ , , - ,  - TPSx') dum,,, 

= 5 c (u i ) ( f ; i . . .=m W,al...am-l - k  - FUmSxO) dgam + SG. (3.12) 

Here c ( u i )  is any function of the parameters U;, which define the position on the 
surface U, and G is the corresponding generating functional. If we transform this 
condition and introduce the quantities 

- al . . .am - k  5 (3.13) 

k Gi[~ ,a l . . .am-l ;  f i ~ ' " ' " ;  x " ]  = G + c*k $ , a l , . . a m - l  due,,, 

K - Tpamdua,, @-I 
the comparison of the corresponding coefficients yields 

where nPm are the contravariant components of the unit vector of the normal and E is 
the mean value of the function c ( u i )  on ai. Similarly, 
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The discussion of this system of equations is similar to that in classical field theory. 
Namely, this is a system of differential or functional differential equations, depending 
on whether or not the generating functional has the form of an integral, and by solving 
this system of equations with respect to i j g l . . . p m ,  or t , $ , u l , . , u m - l ,  we obtain new canonical 
variables as functionals of the old ones. 

For the canonical transformation of the form 

1". u m = r ; l . . . u m  + a r k  U um (3.16) k k - k  - 

one may take as the generating functional 

I(l,ul...um-l - $,a1 ... um-l +W.a1...am-17 

where E is a small parameter. On the basis of (3.14) one then obtains approximately 

With the aid of these relations, the variation of any functional of the canonical 
variables may be found: 

- k  - al . . .am k 7T;1...um; X U ] .  SF=F[$.u l . . .q, ,- l;  T k  ; X u I - F [ $ , u l  ... u,,,-19 

Developing the first term into a Taylor series, generalised for the functionals, we find 

SF = E[F, GI], (3.19) 

where the symbol [ ] denotes the generalised Poisson bracket 

That is the generalisation of Freistadt's (1959) bracket, extended to this case. 

3.4. Hamilton-Jacobi method 

Let us consider now a canonical transformation for which the new Hamiltonian 
vanishes. In this case the new canonical variables are constants of motion in the sense 

(3.21) 

To obtain an equation determining the generating functional of this canonical 
transformation, we must express T i m  as a function of &" and find Kp according to 
(3.13): 

- k  
a+,"l - .Um/axum = 0 ,  a ~ , u l . . . U m - l / a X u m  = 0. 

(3.22) k k KO = ~ ~ ' " ~ P m ( n u m ~ , u l . . . u m - l ~ -  np9 ) d u  + &P dr5. 

Since = 0 in the new variables, and from (3.21) $,:,, = 0, it follows that 

R p  = ?=':m dcUm = 0. J 
If all the generalised momenta r;l...Um in the expression for the functional KB are 
substituted according to the first relation of (3.14) by n u m S S / S $ , ~ l , , , u m - l ,  the last 
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relation of (3.14) can be written in the form 

(3.23) 

(3.24) 

These four equations are the corresponding Hamilton-Jacobi equations in this 
covariant formalism. To each coordinate x' there corresponds a functional differen- 
tial equation of this type, where one of the functionals KO appears instead of the 
Hamiltonian, which constitutes a characteristic difference compared with classical 
field theory. For the space-like surface t=constant, K 4 = H ,  so that the fourth 
equation is reduced to the Hamilton-Jacobi equation of classical field theory. 

Let us assume that we have found a complete integral of this equation of the form 

sa- = ~ ~ m [ $ , ~ , , , , ~ ~ - ~ ;  aFl""m ; x P I ,  

where are arbitrary functions of x a  with the divergence being equal to zero. 
Taking atl."am = +r1...OLm , one obtains all the canonical variables by solving the cor- 
responding system of equations, differential or functional 

(3.25) 

3.5. Lagrange and Poisson brackets 

Let us express the condition (3.12) as a function of primary variables only, substituting 
Si,b,a,,.,am-, by the corresponding functional differential. Using the conditions that this 
expression be a total differential, in a manner similar to that of classical field theory, 
one obtains 

- k  

{ $ , a 1 . . . a m - , ( X ) ,  k *,pl . . .Pm-l (~ ' )}&,*  1 = 0 ,  { n t l ' . . u m ( x ) ,  T P 1 . ' . P m ( X f ) } 4 , 6  = 0 
k (3.26) 

{$ ,a , . . .am- l (x ) ,  ~P'.-P"(x'))4,6 = SPaSbPm(X - x ' ) / t ,  
where the generalised Lagrangian bracket is introduced as: 

(3.27) 
and where Sp,(x -x ' )  = nPmS(x - x ' ) .  These conditions may be formulated also using 
generalized Poisson brackets, in the form: 

[T;l...=m(X), T p l . . . P m  (Xt)1&,6 = 0 
k 1 

[ $ , a l . . . a m - , ( X ) I  $ , P , . . . P m - , ( X ' ) 1 4 . 6  = 0 ,  
k (3.28) 

[ $ , a l . . . a m - , ( X ) ,  TP1...'m(x')].J,6 = ES,ps:Sp-(x -x') .  

If the generalised Lagrange bracket is formed in new canonical variables, and then 
transformed back to the original variables, the result can be expressed by the 
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fundamental brackets. In this way, on the basis of (3.26), one obtains 

Iu(x),  v ( x ' ) h  = {u (x ) ,  u(x')),=lc' 

and by a similar procedure for the generalised Poisson bracket: 

(3.29) 

[F, GI$,* = E[F, GI+,=. (3.30) 

Then the generalised Lagrange and Poisson brackets remain invariant under canonical 
transformations up to the multiplier 1/E, or c'. 

3.6. Canonical equations in the form of Poisson brackets 

Let us form the generalised Poisson brackets with canonical variables for any 
* ~ : 1 , . , ~ - ;  x a ] .  Thus, bearing in mind the properties functional of the form F[$,al , . .am-l ,  

of Dirac's delta function, one obtains 

k 

(3.31) 

and similarly, multiplying by num(x) 

n,,,,cx,[ m ? " Y x  1, FI = -SF/W,kl...a,,,-l ( x  1. (3.32) 

If one takes F = H and the expressions on the right-hand side are substituted accord- 
ing to the generalised Hamiltonian equations, the above relations assume the form 

(3.33) 

These are the generalised Hamiltonian equations, i.e. de Donder's equations in the 
form of Poisson brackets. They might be of special interest in quantum mechanics for 
the quantisation of physical fields. If the analogy between classical and quantum 
mechanics remains valid for this generalised case, then the transition to quantum 
equations may be made effectively by substituting the corresponding commutators for 
these generalised Poisson brackets. 

3.7. Integral invariants of the first order 

In order to represent geometrically the states of a physical field in a certain point x p  of 
Minkowski space, let us introduce the phase space as a Euclidean space with elements 
$,a , . . ,am-l (x ' )  and T ~ ~ . . . " ~ ( x ' ) .  Now let us consider, in the enlarged phase space, any 
closed curve Lo, defined by 

k 

T ; ~ . . . ~ m  = T;l...a m(W1 1, (3.34) k 
$,a1 ... am-l -$ ,a l . . . am- , (w~  A!, - k 

where w is the time-like parameter defining the surface cr, and through every point of 
that curve for constant w, we have the corresponding trajectory of the state. Then the 
corresponding integral invariants may be obtained by the following procedure. 

If we begin with the boundary formula (3.10) and assume that these variations 
arise from the change of the parameter A, then integrating this relation along the 
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variables and by generalising the corresponding relation from analytical mechanics to 
this case. In this way the integrand of each of these integrals may be expressed by the 
generalised Lagrange brackets, and thus on the basis of (3.29) one obtains 

.Tf = Yf/tf (1 c f d rsN). (3.39) 

Hence, all the generalised PoincarC integrals of higher order for any fixed value of 
N remain invariant up to the multiplier 1/Ef. Nevertheless, this result does not enable 
us to express, within this covariant formalism, the corresponding Liouville theorem by 
use of only space-time coordinates xu ,  while this is possible in the parametric 
formalism. 
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